Files
ficus/src/arch/x86/task.cpp
2023-10-22 19:12:55 +02:00

403 lines
11 KiB
C++

//
// Created by Stepan Usatiuk on 18.08.2023.
//
#include "task.hpp"
#include "LockGuard.hpp"
#include "Spinlock.hpp"
#include "cv.hpp"
#include "gdt.hpp"
#include "kmem.hpp"
#include "misc.hpp"
#include "mutex.hpp"
#include "paging.hpp"
#include "serial.hpp"
#include "string.h"
#include "timer.hpp"
#include "tty.hpp"
char temp_fxsave[512] __attribute__((aligned(16)));
void sanity_check_frame(struct task_frame *cur_frame) {
assert2((void *) cur_frame->ip != NULL, "Sanity check");
assert2((void *) cur_frame->sp != NULL, "Sanity check");
assert2(cur_frame->guard == IDT_GUARD, "IDT Guard wrong!");
assert2((cur_frame->ss == GDTSEL(gdt_data) || cur_frame->ss == GDTSEL(gdt_data_user)), "SS wrong!");
}
struct TaskListNode {
struct Task *task;
struct TaskListNode *next;
};
struct TaskList {
struct TaskListNode *cur;
struct TaskListNode *last;
};
struct TaskListNode *RunningTask;
// Should be touched only in the scheduler
struct TaskList NextTasks;
// New tasks
struct Spinlock NewTasks_lock;
struct TaskList NewTasks;
// Unblocked tasks
struct Spinlock UnblockedTasks_lock;
struct TaskList UnblockedTasks;
// Task freer
Spinlock TasksToFree_lock;
struct TaskList TasksToFree;
struct TaskList TasksToFreeTemp;
// Waiting
//struct Mutex WaitingTasks_lock = DefaultMutex;
struct TaskList WaitingTasks;
static std::atomic<bool> initialized = false;
static void free_task(struct Task *t) {
kfree(t->stack);
kfree(t->name);
kfree(t->fxsave);
kfree(t);
}
static void free_task_list_node(struct TaskListNode *t) {
kfree(t);
}
static struct TaskListNode *new_task_list_node() {
struct TaskListNode *ret = static_cast<TaskListNode *>(kmalloc(sizeof(struct TaskListNode)));
ret->task = NULL;
ret->next = NULL;
return ret;
}
static void append_task(struct TaskList *list, struct Task *task) {
if (list == &NextTasks) {
assert2(task->state == TS_RUNNING, "Trying to add blocked task to run queue!");
}
struct TaskListNode *newNode = new_task_list_node();
newNode->task = task;
if (!list->cur) {
list->cur = newNode;
list->last = newNode;
} else {
list->last->next = newNode;
list->last = newNode;
}
}
static void append_task_node(struct TaskList *list, struct TaskListNode *newNode) {
if (list == &NextTasks) {
assert2(newNode->task->state == TS_RUNNING, "Trying to add blocked task to run queue!");
}
newNode->next = NULL;
if (!list->cur) {
assert(list->last == NULL);
list->cur = newNode;
list->last = newNode;
} else {
list->last->next = newNode;
list->last = newNode;
}
}
static struct Task *peek_front(struct TaskList *list) {
struct Task *ret = NULL;
if (list->cur) {
ret = list->cur->task;
}
return ret;
}
static struct Task *pop_front(struct TaskList *list) {
struct Task *ret = NULL;
if (list->cur) {
struct TaskListNode *node;
node = list->cur;
ret = node->task;
list->cur = node->next;
free_task_list_node(node);
if (list->cur == NULL) list->last = NULL;
}
return ret;
}
static struct TaskListNode *pop_front_node(struct TaskList *list) {
struct TaskListNode *ret = NULL;
if (list->cur) {
struct TaskListNode *node;
node = list->cur;
ret = node;
list->cur = node->next;
if (list->cur == NULL) list->last = NULL;
} else {
assert(list->last == NULL);
}
if (ret) ret->next = NULL;
return ret;
}
static void task_freer() {
while (true) {
sleep_self(10000);
{
LockGuard l(TasksToFree_lock);
if (peek_front(&TasksToFree) == NULL)
continue;
assert2(peek_front(&TasksToFree) != NULL, "Sanity check");
while (peek_front(&TasksToFree) && peek_front(&TasksToFree)->state == TS_TO_REMOVE) {
free_task(pop_front(&TasksToFree));
}
}
}
}
struct Task *new_ktask(void (*fn)(), const char *name) {
struct Task *newt = static_cast<Task *>(kmalloc(sizeof(struct Task)));
newt->stack = static_cast<uint64_t *>(kmalloc(TASK_SS));
newt->name = static_cast<char *>(kmalloc(strlen(name) + 1));
newt->fxsave = static_cast<char *>(kmalloc(512));
strcpy(name, newt->name);
newt->frame.sp = ((((uintptr_t) newt->stack) + (TASK_SS - 9) - 1) & (~0xFULL)) + 8;// Ensure 16byte alignment
// It should be aligned before call, therefore on function entry it should be misaligned by 8 bytes
assert((newt->frame.sp & 0xFULL) == 8);
newt->frame.ip = (uint64_t) fn;
newt->frame.cs = GDTSEL(gdt_code);
newt->frame.ss = GDTSEL(gdt_data);
for (int i = 0; i < 512; i++) newt->fxsave[i] = 0;
newt->frame.flags = flags();
newt->frame.guard = IDT_GUARD;
newt->addressSpace = KERN_AddressSpace;
newt->state = TS_RUNNING;
newt->mode = TASKMODE_KERN;
sanity_check_frame(&newt->frame);
{
LockGuard l(NewTasks_lock);
append_task(&NewTasks, newt);
}
return newt;
}
void init_tasks() {
// FIXME: not actually thread-safe, but it probably doesn't matter
assert2(!atomic_load(&initialized), "Tasks should be initialized once!");
new_ktask(task_freer, "freer");
atomic_store(&initialized, true);
}
void remove_self() {
RunningTask->task->state = TS_TO_REMOVE;
yield_self();
assert2(0, "should be removed!");
}
void sleep_self(uint64_t diff) {
RunningTask->task->sleep_until = micros + diff;
RunningTask->task->state = TS_TO_SLEEP;
yield_self();
}
void yield_self() {
if (!RunningTask) return;
NO_INT(
if (RunningTask->task->mode == TASKMODE_KERN) {
_yield_self_kern();
})
}
extern "C" void switch_task(struct task_frame *cur_frame) {
assert2(!are_interrupts_enabled(), "Switching tasks with enabled interrupts!");
if (!atomic_load(&initialized)) return;
sanity_check_frame(cur_frame);
struct TaskListNode *node = WaitingTasks.cur;
while (node) {
if (node->task->sleep_until <= micros && node->task->state == TS_TO_SLEEP) {
assert2(node->task->sleep_until, "Sleeping until 0?");
node->task->sleep_until = 0;
node->task->state = TS_RUNNING;
append_task_node(&NextTasks, pop_front_node(&WaitingTasks));
node = WaitingTasks.cur;
} else {
break;
}
}
assert2(!are_interrupts_enabled(), "Switching tasks with enabled interrupts!");
if (RunningTask) {
RunningTask->task->frame = *cur_frame;
memcpy(RunningTask->task->fxsave, temp_fxsave, 512);
if (RunningTask->task->state == TS_RUNNING) {
assert2(RunningTask->next == NULL, "next should be removed from RunningTask!");
append_task_node(&NextTasks, RunningTask);
} else if (RunningTask->task->state == TS_TO_SLEEP) {
if (!WaitingTasks.cur) {
assert(WaitingTasks.last == NULL);
WaitingTasks.cur = RunningTask;
WaitingTasks.last = RunningTask;
} else {
struct TaskListNode *prev = NULL;
struct TaskListNode *cur = WaitingTasks.cur;
while (cur && cur->task->sleep_until <= RunningTask->task->sleep_until) {
prev = cur;
cur = cur->next;
}
if (prev) {
prev->next = RunningTask;
RunningTask->next = cur;
if (cur == NULL) WaitingTasks.last = RunningTask;
} else {
RunningTask->next = WaitingTasks.cur;
WaitingTasks.cur = RunningTask;
}
// if (cur == WaitingTasks.last) WaitingTasks.last = RunningTask;
}
} else if (RunningTask->task->state == TS_TO_REMOVE) {
append_task_node(&TasksToFreeTemp, RunningTask);
}
}
if (TasksToFreeTemp.cur && !UnblockedTasks_lock.test() && TasksToFree_lock.try_lock()) {
if (peek_front(&TasksToFree) == NULL) {
TasksToFree.cur = TasksToFreeTemp.cur;
TasksToFree.last = TasksToFreeTemp.last;
TasksToFreeTemp.cur = NULL;
TasksToFreeTemp.last = NULL;
}
TasksToFree_lock.unlock();
}
RunningTask = NULL;
if (NewTasks_lock.try_lock()) {
while (peek_front(&NewTasks)) {
append_task_node(&NextTasks, pop_front_node(&NewTasks));
}
NewTasks_lock.unlock();
}
if (UnblockedTasks_lock.try_lock()) {
while (peek_front(&UnblockedTasks)) {
if (NextTasks.last) {
NextTasks.last->next = UnblockedTasks.cur;
NextTasks.last = UnblockedTasks.last;
UnblockedTasks.last = nullptr;
UnblockedTasks.cur = nullptr;
} else {
append_task_node(&NextTasks, pop_front_node(&UnblockedTasks));
}
}
UnblockedTasks_lock.unlock();
}
struct TaskListNode *next = pop_front_node(&NextTasks);
assert2(next != NULL, "Kernel left with no tasks!");
assert2(next->task != NULL, "Kernel left with no tasks!");
assert2(next->task->state == TS_RUNNING, "Blocked task in run queue!");
RunningTask = next;
*cur_frame = RunningTask->task->frame;
memcpy(temp_fxsave, RunningTask->task->fxsave, 512);
sanity_check_frame(cur_frame);
}
void wait_m_on_self(struct Mutex *m) {
if (!m->waiters) {
m->waiters = static_cast<TaskList *>(kmalloc(sizeof(struct TaskList)));
m->waiters->cur = NULL;
m->waiters->last = NULL;
}
// TODO: lock-free?
NO_INT(append_task_node(m->waiters, RunningTask);
RunningTask->task->state = TS_BLOCKED;)
yield_self();
}
void m_unlock_sched_hook(struct Mutex *m) {
struct TaskListNode *newt = NULL;
NO_INT(if (m->waiters) {
newt = pop_front_node(m->waiters);
})
if (newt) {
newt->task->state = TS_RUNNING;
{
LockGuard l(UnblockedTasks_lock);
append_task_node(&UnblockedTasks, newt);
}
}
}
void wait_cv_on_self(struct CV *cv) {
if (!cv->waiters) {
cv->waiters = static_cast<TaskList *>(kmalloc(sizeof(struct TaskList)));
cv->waiters->cur = NULL;
cv->waiters->last = NULL;
}
// TODO: lock-free?
NO_INT(append_task_node(cv->waiters, RunningTask);
RunningTask->task->state = TS_BLOCKED;)
yield_self();
}
void cv_unlock_sched_hook(struct CV *cv, int who) {
struct TaskListNode *newt = NULL;
do {
NO_INT(if (cv->waiters) {
newt = pop_front_node(cv->waiters);
})
if (newt) {
newt->task->state = TS_RUNNING;
{
LockGuard l(UnblockedTasks_lock);
append_task_node(&UnblockedTasks, newt);
}
}
} while (newt && (who == CV_NOTIFY_ALL));
}
struct Task *cur_task() {
if (!RunningTask) return NULL;
return RunningTask->task;
}